

Introduction

- Nitrification is a major pathway of N_2O production in aerobic soils.
- Robust prediction of gross nitrification rate (R_{nit}) and associated N₂O production is difficult due to uncertainty in existing process-based models and limited measured data to improve those models.

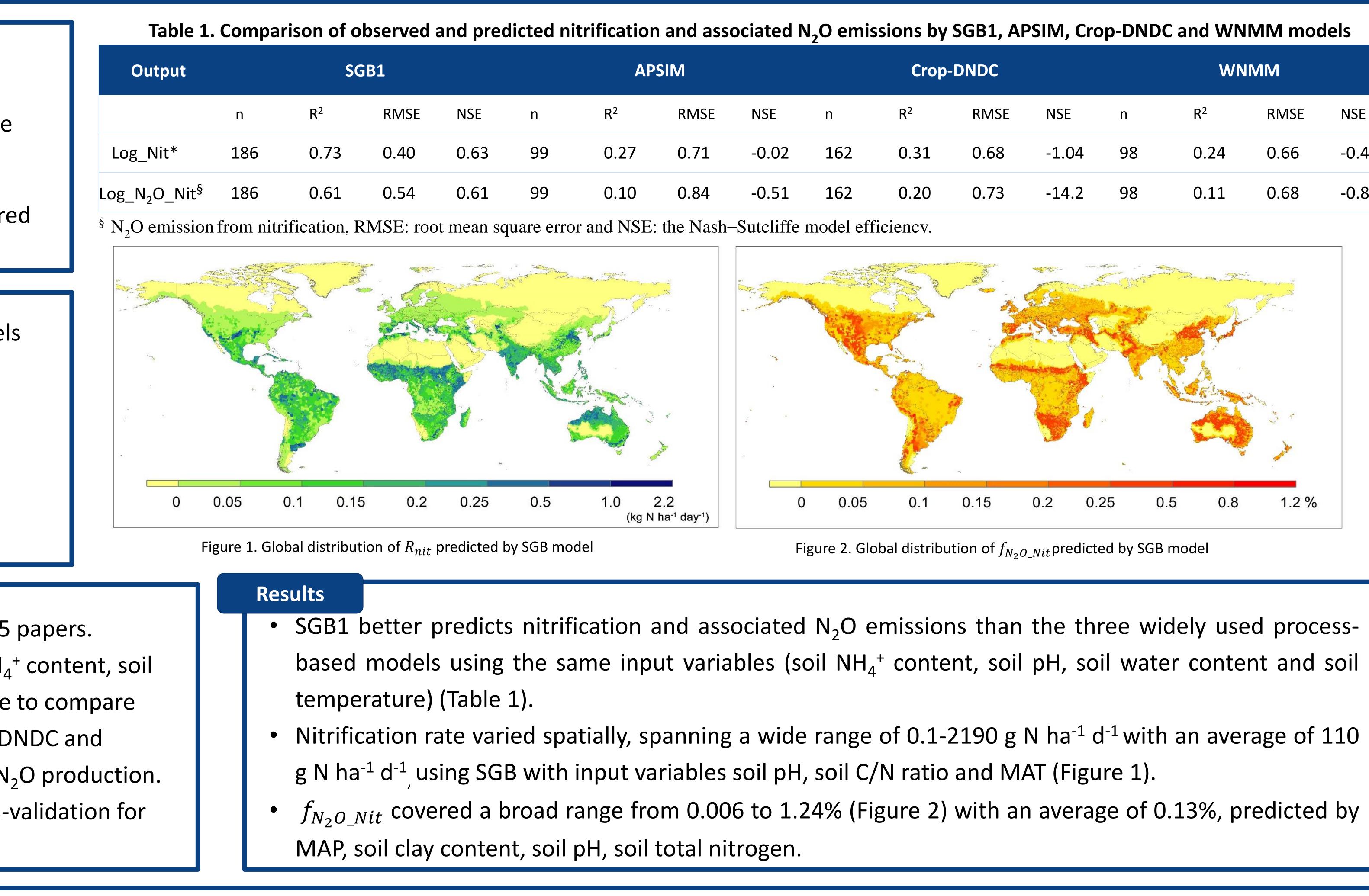
Objectives

- To compare the performance of SGB models and process-based models in predicting nitrification rate and associated N₂O production using a global literature-based database.
- To extend the simulation of R_{nit} and the fraction of nitrification as N₂O emissions (f_{N2ONit}) using SGB models.

Methods

- Dataset based on 186 observations from 25 papers.
- Using the same input variables, viz. soil NH₄⁺ content, soil pH, soil water content and soil temperature to compare the performance of SGB and APSIM, Crop-DNDC and WNMM in predicting R_{nit} and associated N₂O production.
- Stepwise variable selection & 10-fold cross-validation for SGB models

Conclusions


For more details,

Pan, B., Lam, S.K., Wang, E., Mosier, A. and Chen, D., 2021. New approach for predicting nitrification and its fraction of N₂O emissions in global terrestrial ecosystems. Environmental Research Letters, 16(3), 034053.

The global distribution of soil nitrification and the fraction of associated N₂O emission by using stochastic gradient boosting models

Baobao Pan¹, Shu Kee Lam^{1*}, Enli Wang², Arvin Mosier¹, and Deli Chen¹

¹ School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, VIC 3010, Australia ² CSIRO Agriculture & Food, GPO Box 1700, Canberra ACT 2601, Australia. *E-mail: bpan@student.unimelb.edu.au

• Large spatial variation in nitrification and its fraction as N₂O emissions was mainly driven by long-term environmental and edaphic factors. • This study provides insights into advancing process-based models for projecting N dynamics and greenhouse gas emissions using a machine learning approach.

APSIM				Crop-DNDC				WNMM			
n	R ²	RMSE	NSE	n	R ²	RMSE	NSE	n	R ²	RMSE	NSE
99	0.27	0.71	-0.02	162	0.31	0.68	-1.04	98	0.24	0.66	-0.45
99	0.10	0.84	-0.51	162	0.20	0.73	-14.2	98	0.11	0.68	-0.89

