

V.V. Dokuchaev Soil Science Institute

Leaf nitrogen content is highly dynamic and variable within every winter wheat plot. Thus, quick and precise determination of nitrogen is required as accurately as possible. The objective is to find the correlation between winter wheat leaf nitrogen content and Sentinel-2 data and predict the amount of available nitrogen using regression modeling. The best model was developed based on vegetation indices, calculated using 4, 9, 10 and 📆 Sentinel-2. 11 bands of the

АГРОТЕХНОЛОГИИ

БУДУЩЕГО

Introduction

Since nitrogen is one of the most essential elements for plant nutrition, nitrogen shortage can affect crop productivity. Excess nitrogen application harms on plant health and environmental situation. Therefore, real-time information about nitrogen crop content is crucial. However, conventional laboratory methods are laborious and take a long time. Using satellite data is a good alternative for operative crop nitrogen monitoring.

Results and discussion

The best linear regression obtained model, characterizing the link between spectral data of Sentinel-2A and nitrogen content, is:

$N = 3977, 10-3787, 63^* NTVI1 - 42, 51^*CCI,$

NTVI1=(Band10-Band11)/(Band10+Band11) where CCI= Band09/Band04

Adjusted R2 = 0.65. Indicators are statistically significant at p-level < 0.05.

Figure 2. Nitrogen Predicted Maps for (A) 25.05.2018 и (Б) 26.06.2018

Detection of nitrogen in winter wheat based on Sentinel-2 data Gretelerika Vindeker^{1,2}, Igor Savin^{1,3}

¹Department of soil genesis, geography and classification, V.V. Dokuchaev Soil Science Institute, Moscow 119017, Russia ² Faculty of Soil Science, Lomonosov Moscow State University, Moscow 119991, Russia ³Institute of Ecology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia E-mail: rvindecker@mail.ru, gretelericka@gmail.com

The nitrogen content was measured using the SPAD 502 Plus N-tester on two dates (25.05.2018) and 26.06.2018). The measurement points in the field (LLC "Novaya Zhizn", Tula region, Russia) were recorded using GPS (accuracy 5 meters). The field area includes ten sites, each with an area about 10 hectares. Each site has 30 measurements of nitrogen in upper winter wheat leaves which were averaged and compared with atmospherically corrected (DOSI method) Sentinel-2 satellite data (Table 1). For all field measurement points we extracted the reflection values for each pixel in all spectral bands. Different vegetation indices were calculated that can be used to determine nitrogen in wheat leaves (Table 2). Regression analysis allowed to find the highest quality models for predicting nitrogen content.

The model was validated based on obtained linear regression and the estimated sample of field measurements.

		b	Std.Err of b	t(5)	p-value
and	Intercept	3977,10	724,2421	5,49140	0,00038
	NTVI1	-3787,63	827,1992	-4,57886	0,00133
	CCI	-42,51	12,7820	-3,32556	0,00886

This research was supported by the Ministry of Science and Higher Education of Russia (Agreement № 075-15-2020-909). Field measurements data were provided by the Tula Agro-Chemical Center (Tula, Russia).

References

Materials and methods

				Vegetation indices	Formula	
	Resoluti				NDVI ₁ =(B08-	
Band	on	Central	Bandwidt	NDVI =(NIR-	B04)/(B08+B04)	
number	(meters	wavelengt	h (nm)	RED)/(NIR+RED)	NDVI ₂ =(B07-	
	`)	h (nm)			B04)/(B07+B04)	
B01	60	443	20	RVI=NIR/RED	RVI=B08/B04	
B02	10	490	65	NDRE=(NIR-	NDRE=(B08-	
B03	10	560	35	RE)/(NIR+RE)	B05)/(B08+B05)	
B04	10	665	30	IPVI=(NDVI+1)/2	IPVI=(B08+1)/2	
B05	20	705	15	CCI	CCI=B09/B04	
B06	20	740	15			
B07	20	783	20	NI1	NI1=B02/B03	
B08	10	842	115	NIT\/I1	NTVI1=(B10-	
B08A	20	865	20		B11)/(B10+B11)	
B09	60	945	20		NTVI2=(B08-	
B10	60	1375	30	ΙΝΙ VΙΖ	B11A)/(B08+B11A)	
B11	20	1610	90	NI2	NI2=B01/B12	
B12	20	2190	180	NI3	NI3=B08A/B04	
Table 1. Band characterization of Sentinel-2A				Table 2. Vegetation indices and spectral band ratios		

This regression model was used for rapid mapping of the nitrogen content in wheat leaves throughout the plots (Fig.2).

Studies have shown good prospects of using Sentinel-2 satellite data to rapidly assess the nitrogen content in wheat leaves. The most informative data were received for the explored region from 4, 9, 10 and 11 bands of Sentinel-2 as indices NTVI1 and CCI. The limited number of points used for both model construction and validation does not allow us to believe that the model is stable as it requires additional field data. The resulting model can hardly be used in other regions or for other wheat varieties. Nevertheless, similar models can be built up for each individual plot and then used in subsequent years to monitor the nitrogen content in wheat without additional field work. In this case the use of data from Unmanned Aircraft Systems could be more perspective with comparison to satellite data.

Acknowledging

Feng, W.; Yao, X.; Zhu, Y.; Tian, Y.C.; Cao, W.X. Monitoring leaf nitrogen status with hyperspectral in wheat. European Journal of Agronomy, v.28, p.39reflectance 4-404, 2008.

Li F, Mistele B, Hu Y, Chen X, Schmidhalter U: Reflectance estimation of canopy nitrogen content in winter wheat using optimised hyperspectral spectral indices and partial least squares regression. Eur J Agron 2014, 52:198–209. Wei, F., Yan, Z., Yongchao, T., Weixing, C., Xia, Y., Yingxue, L., 2008. Monitoring leaf nitrogen accumulation in wheat with hyper-spectral remote sensing. Acta Ecol. Sin. 28 (1), 23–32.

Zhu, Y., Li, Y., Feng, W., Tian, Y., Yao, X., Cao, W., 2006. Monitoring leaf nitrogen in wheat using canopy reflectance spectra. Can. J. Plant Sci. 86, 1037–1046.

8th GLOBAL NITROGEN CONFERENCE 30. MAY – 3. JUNE 2021 | BERLIN, GERMANY