

National Nitrogen Budget for Germany

Uwe Häußermann¹, Martin Bach¹, Stephan Fuchs², Markus Geupel³, Jürg Heldstab⁴, Laura Klement¹, Lukas Knoll¹, Judith Reutimann⁴, Bettina Schäppi⁴, Tatyana Weber², Lutz Breuer^{1,5}

¹ Institute for Landscape Ecology and Resources Management, University Giessen, Germany ² Institute for Water and River Basin Management, Karlsruhe Institute for Technology, Germany ³ German Environment Agency Germany, Dessau-Roßlau, Germany Contact: uwe.haeussermann@umwelt.uni-giessen.de

⁴ INFRAS AG, Zürich, Switzerland

⁵ Centre for International Development and Environmental Research (ZEU), University Giessen, Germany

Objectives – Key questions

National Nitrogen Budgets (NNB) aims to quantify sources and fate of reactive nitrogen (Nr).

Individual Pools (selected aspects)

- Material and Products in Industry German Production Survey (DESTATIS 2017): many double countings, discrepancy 1,400 kt N a⁻¹ between inflow and outflow
- How much Nr is introduced into the nitrogen cycle each year in Germany?
- Where does this Nr come from and where does is go?
- How reliable are the results about the N flows?

Material and methods

- Scheme of the 'Guidance document on National Nitrogen Budgets' (ECE 2013) applied
- Main data bases for Germany
 - Official statistics (material flows)
 - Greenhouse gases National Inventory Reports
 - Model approaches (LOTOS-EUROS, MSC-W, MoRE)
- 8 Pools (with 20 sub-pools) calculated acc. to ECE (2013)
 - Atmosphere
 - Energy and Fuels
 - Material and Products in Industry
 - Humans and Settlements
 - Agriculture
 - Forest and Semi-natural Vegetation

Agriculture

Denitrification as most relevant biological Nr elimination process. Soil N stock accumulation: not probable for agricultural soils in Germany

Solid Waste

German Waste Generation Statistics and Waste Balance Statistics deviates considerably; no reliable figures on N flows

Transboundary N flows

Germany exports net 740 kt N a⁻¹ via atmosphere and river transport to neighbouring countries and coastal seas

Source	NO _x -N	NH ₃ -N	N ₂ O-N	NO ₃ -N	Totals	
Agriculture	36	558	65	382	1041	67%
Transport	160	12	3	0	174	11%
Industry, Energy Conversion	184	17	12	30	242	16%
Households, wastewater treatment plants, urban areas	<1	3	2	84	89	6%
Totals	380	589	82	496	1547	100%

- Waste
- Hydrosphere
- additionally Transboundary Flows (import & export)
- In total more than 150 N flows quantified

Results (details ref. UBA 2020)

Table I: Anthropogenic sources and emissions of reactive nitrogen into air and surface waters in Germany (kt N a⁻¹)

Process	N species	N flow (kt N a ⁻¹)	
Ammonia synthesis	NH ₃	2,695	
Domestic extraction and net import of fossil fuels	Norg	2,335	
Formation of thermal No _x	NO _x	192	
Biological N fixation in soils	Norg	308	
Net import with food, feed and materials (without fuels)	Norg	745	
Sum of sources	6,275		
Conversion of N _r to N ₂ with combustion and denoxing	N ₂	-1,706	
Nitrogen losses with refining of crude oil	N ₂	-818	
Denitrification total, of which	N ₂	-1,107	
- Soils	N ₂	-248	
 Waters (groundwater, surface waters) 	N ₂	-648	
- Wastewater treatment plants	N ₂	-211	
Waste disposal (landfills)	Norg	-85	
Net export via atmosphere	NH ₃ , N ₂ O, NO _x	-312	
Net export with rivers	NO ₃ , Norg	-433	
Sum of sinks	-4,471		
Difference		1,804	

Table 2: Sources and final sinks of reactive nitrogen in Germany

Figure I: Flowchart on nitrogen pools and N flows (kt N a⁻¹) of the National Nitrogen Budget for Germany (mean 2010-2014)

(mean 2010-2014)

Conclusions

- Most complete dataset of Nr data in Germany
- Quantification of the flows is very uncertain (especially in industrial production and waste management)
- Agriculture causes 67% of Nr emissions into air and waters
- Denitrification is most important conversion process of Nr to N_2 in the biosphere
- Totals of inflow and outflow differs by $\sim 1,800$ kt N a⁻¹ (29% of total inflow) -> overestimates sources, unknown sinks, underrated Nr release?

References

ECE (2013): Guidance document on national nitrogen budgets. Economic Commission for Europe (ECE), Executive Body for the Convention on Long-range Transboundary Air Pollution, ECE_EB.AIR_119

DESTATIS (2017): Produzierendes Gewerbe 2016. Fachserie 4, Reihe 3.1. Statistisches Bundesamt, Wiesbaden, Germany

UBA (2020): Reactive nitrogen flows in Germany 2010-2014 (DESTINO Report 2). Final Report. German Environment Agency, Dessau-Roßlau, UBA-Texte 65/2000, 152 p.

Funding: Environmental Research of the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, Project No. (FKZ) 3716512000, Report No. FB000254/ENG, 2