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Changes of soil microbes related with carbon and nitrogen cycling after long-term CO; enrichment
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Introduction

» Rising atmospheric CO, concentration may lead to an increased input of available C from plants to the soil

through rhizodeposition and may affect soil microbes with implications for the interaction between the C-

and N-cycling.

e Changes of soil functional microbes associated with C-

and N-cycling under

long-term elevated

CO3 level (eCOy) suggest concomitant alterations of microbial biomass, N availability and gaseous N
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Fig.1 Effects of eCO2 on MBC and MBN
Table 1. The copy number of 16s rDNA and ITS in rhizospheric and bulk soil of maize at tasseling
Ob] ectives stage under elevated CO; concentration. Data are the mean + S.E., n = 3. Different letters indicate
significants differences among CO, concentration, rhizophere and bulk soil at p < 0.05.
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and bacteria (16S rRNA).

e To examine the responses of soil microbial biomass (microbial
biomass-C and -N) and soil N availability (mineral N) in both
rhizospheric and bulk soils to long-term eCO».

Table 2. The copy number of AOB, nir5, nirk and nos? in rhizospheric and bulk soil of maize at

tasseling stage under elevated COy concentration, Data are the mean + S.E., n = 3. Different letters

indicate significants differences among CC% concentration, rhizophere and bulk soil at p < 0.05,

Materials & Methods
1. FACE experiment

» Ambient CO; (aCO3, 400 ppm)
» Elevated CO; (eCO3, 550 ppm)

2. Studied soil

» Rhizospheric soil and bulk soil at 0-20 cm depth at tasseling stage
of maize growth period

3. Measurements

» Ammonium and nitrate concentrations

» Microbial biomass-C and -N (MBC and MBN)

» Quantity of microbial groups based on qPCR

» Composition of microbial communities based on DNA sequencing.

Results & Discussion

1. MBC and MBN in rhizospheric soil were significantly
increased under eCO,. This may due to the increased roots

exudates and root exfoliations induced by eCO».

2. In rhizospheric soil, increased quantity of fungi under eCO,

and reduced bacterial quantity were observed, illustrating that
the effect of eCO, mainly reflected in the increase of fungi.

3. For bacterial community, Sphingomonadales that can
produce catalase, was declined in relative abundance under
eCO,, suggesting that oxygen content may be altered under
eCO;. For fungal communities, Chaetomium and Humicola
that can synthesize cellulase, hemicellulase and amylase, were
increased in relative abundance under eCO», possibly due to
the increase in dead root litter.

4. The quantity of AOB and denitrifiers were promoted under
eCO», particularly in rhizospheric soil.

5. The changes of microbial cummunity compositions
associated with N-cycling were reflected on the decrease in
Nitrosospira for AOB, increase in Mesorhizobium for nirk,
increase in Herbaspirillum and Bradyrhizobium for nosZ.
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Fig.2 The composition of 16S rRNA at order level
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Fig.4 The composition of AOB at genus level

nosZ at the genus level
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Fig.3 The composition of ITS at genus level
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Fig.5 The composition of nirS, nirK and nosZ

Conclusion

Ten years of CO, enrichment did not significantly change the cummunity
compositions of functional microbes associated with C- and N-cycling, possibly
due to the differences in the form and quantity of soil C and N under eCO»,

especially in rhizospheric soil.
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