

in a typical Chinese maize field

Tiantian Diao, Xiaoguang Niu, Fen Ma, and Liping Guo

Key Lab for Agro-Environment, Ministry of Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; * Corresponding author: guoliping@caas.cn

Introduction

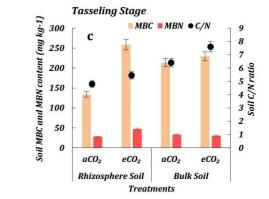
- Rising atmospheric CO₂ concentration may lead to an increased input of available C from plants to the soil through rhizodeposition and may affect soil microbes with implications for the interaction between the C-and N-cycling.
- Changes of soil functional microbes associated with C- and N-cycling under long-term elevated CO₂ level (eCO₂) suggest concomitant alterations of microbial biomass, N availability and gaseous N emissions.

Objectives

- To investigate the impacts of 10-year eCO₂ on the microbial abundance and composition in both rhizospheric and bulk soils, based on functional marker genes for ammonia oxidation (bacterial *amoA*) and denitrification (*nirK*, *nirS*, *nosZ*), as well as fungi (ITS) and bacteria (16S rRNA).
- To examine the responses of soil microbial biomass (microbial biomass-C and -N) and soil N availability (mineral N) in both rhizospheric and bulk soils to long-term eCO₂.

Materials & Methods

1. FACE experiment


- Ambient CO₂ (aCO₂, 400 ppm)
- Elevated CO₂ (eCO₂, 550 ppm)

2. Studied soil

• Rhizospheric soil and bulk soil at 0-20 cm depth at tasseling stage of maize growth period

3. Measurements

- Ammonium and nitrate concentrations
- Microbial biomass-C and -N (MBC and MBN)
- Quantity of microbial groups based on qPCR
- · Composition of microbial communities based on DNA sequencing.

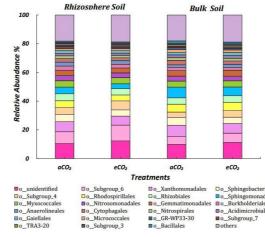
Fig.1 Effects of eCO₂ on MBC and MBN

Table 1. The copy number of 16s rDNA and ITS in rhizospheric and bulk soil of maize at tasseling stage under elevated CO₂ concentration. Data are the mean \pm S.E., n = 3. Different letters indicate significants differences among CO₂ concentration, rhizophere and bulk soil at *p* < 0.05.

Treatment	16s rDNA (*10 ⁹)	ITS (*10 ⁷)	16s rDNA/ITS
aCO ₂ -R	2.36 ± 0.28 a	1.58 ± 0.05 b	149.38 b
eCO ₂ -R	$1.77 \pm 0.10 \text{ b}$	2.01 ± 0.16 a	88.67 c
aCO ₂ -B	1.37 ± 0.30 c	$0.16 \pm 0.02 d$	547.90 a
eCO ₂ -B	1.95 ± 0.26 b	1.21 ± 0.09 c	137.35 b

Table 2. The copy number of AOB, nirS, nirK and nosZ in rhizospheric and bulk soil of maize at tasseling stage under elevated CO₂ concentration. Data are the mean \pm S.E., n = 3. Different letters indicate significants differences among CO₂ concentration, rhizophere and bulk soil at p < 0.05.

Treatment	AOB (107)	nirS (*10 ⁶)	nirK (*10 ⁹)	nosZ (*10 ⁸)	nosZ/ (nirS + nirK
aCO2-R	6.38 ± 0.10 b	2.77 ± 0.17 d	4.64 ± 0.30 b	4.75 ± 0.48 c	0.16 b
eCO2-R	6.56 ± 0.39 b	6.31 ± 0.37 b	7.63 ± 0.13 a	25.41 ± 5.53 b	0.59 a
aCO ₂ -B	6.58 ± 0.99 b	3.54 ± 0.39 c	5.29 ± 0.82 ab	8.56 ± 0.84 c	0.10 b
eCO ₂ -B	7.54 ± 0.23 a	9.29 ± 0.54 a	6.39 ± 0.55 ab	52.3 ± 2.51 a	0.33 ab

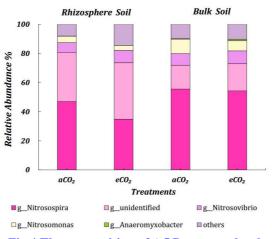

Relative Abundance %

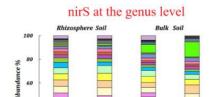
60

40

20

aCO2




Treat

aCO2

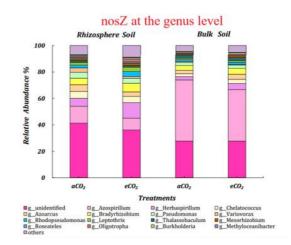
ents

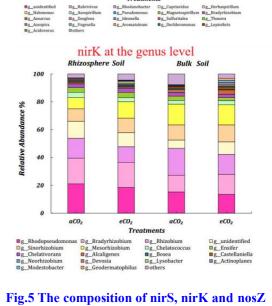
eCO2

Results & Discussion

1. MBC and MBN in rhizospheric soil were significantly increased under eCO_2 . This may due to the increased roots exudates and root exfoliations induced by eCO_2 .

2. In rhizospheric soil, increased quantity of fungi under eCO_2 and reduced bacterial quantity were observed, illustrating that the effect of eCO_2 mainly reflected in the increase of fungi.


3. For bacterial community, *Sphingomonadales* that can produce catalase, was declined in relative abundance under eCO_2 , suggesting that oxygen content may be altered under eCO_2 . For fungal communities, Chaetomium and Humicola that can synthesize cellulase, hemicellulase and amylase, were increased in relative abundance under eCO_2 , possibly due to the increase in dead root litter.


4. The quantity of AOB and denitrifiers were promoted under eCO₂, particularly in rhizospheric soil.

5. The changes of microbial cummunity compositions associated with N-cycling were reflected on the decrease in Nitrosospira for AOB, increase in Mesorhizobium for *nirK*, increase in Herbaspirillum and Bradyrhizobium for *nosZ*.

References

Fig.4 The composition of AOB at genus level

Conclusion

Ten years of CO₂ enrichment did not significantly change the cummunity compositions of functional microbes associated with C- and N-cycling, possibly due to the differences in the form and quantity of soil C and N under eCO₂, especially in rhizospheric soil.

- 1. Barnard, R., Barthes, L., Le Roux, X., Harmens, H., Raschi, A., Soussana, J.F., Winkler, B., Leadley, P.W., 2004. Atmospheric CO₂ elevation has little effect on nitrifying and denitrifying enzyme activity in four European grasslands. Glob. Change Biol. 10, 488-497.
- 2. Carney, K.M., Hungate, B.A., Drake, B.G., Megonigal, J.P., 2007. Altered soil microbial community at elevated CO₂ leads to loss of soil carbon. Proc. Natl. Acad. Sci. 104, 4990-4995.
- 3. Drigo, B., Kowalchuk, G.A., van Veen, J.A., 2008. Climate change goes underground: effects of elevated atmospheric CO₂ on microbial community structure and activities in the rhizosphere. Biological Fertility Soils. 44, 667-679.
- 4. Drissner, D., Blum, H., Tscherko, D., Kandeler, E., 2007. Nine years of enriched CO₂ changes the function and structural diversity of soil microorganisms in a Grassland. Eur. J. Soil Sci. 58, 732 260-269.
- 5. Phillips, R.P., Finzi, A.C., Bernhardt, E.S., 2011. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO₂ fumigation. Ecol. Lett. 14,187-194.
- 6. Zak D.R., Pregitzer, K.S., Curtis, P.S., Holmes, W.E., 2000. Atmospheric CO₂ and the composition and function of soil microbial communities. Ecological Applications. 10, 47-59.