Submission template for oral / poster presentation

Balancing N inputs for China's green agricultural development

Liu Xuejun¹, Wim de Vries^{2,3}, Zhang Ying¹, Ma Lin⁴, Cui Zhenling¹, Zhu Qichao¹, Fan Mingsheng¹, Zhang Weifeng¹, Tom Misselbrook⁵, Keith Goulding⁵, Dave Chadwick⁶, Zhang Fusuo¹

¹ College of Resources and Environmental Sciences, China Agricultural University, Beijing, China

² Wageningen University and Research, Wageningen, NL

³ Alterra-Wageningen University and Research, Wageningen, NL

⁴ Center for Agricultural Resources Research, IGDB, CAS, Shijiazhuang, China

⁵ Rothamsted Research, UK

⁶ Bangor University, Bangor, UK

E-mail:liu310@cau.edu.cn

Abstract

Using environmental threshold and meta-analyses, we identified 'ideal' N inputs for China. Nitrogen inputs required to achieve food security for China increased from 12 to 30 Tg N yr⁻¹ during 1950 and 2015, while actual N inputs increased from 6 to 52 Tg N yr⁻¹ during the same period, exceeding the required and critical inputs (28-35 Tg N yr⁻¹) after 1980. We show how 20 Tg N yr⁻¹ reduction in N input can be achieved through integrated N management practices. Such a 'win-win' would improve environmental quality greatly but need systematic reforms on agricultural structure, technology-transfer mode, and environmental policies.

Keywords: historic change of N balance, required N input, critical N input, food security, environmental sustainability

Nitrogen (N) fertilizer has played a key role in feeding the increased global population since the invention of the Haber-Bosch process (Erisman et al., 2008). With the increasing population and living standards, China is facing a huge challenge on how to produce enough food to meet the future demand only using environmental-safe N input. This challenge needs urgent answer for green agricultural development, that is, meeting double targets of food security and environmental sustainability.

1. N budgets and food security

We systematically evaluated N input and output budgets in China in 1950, 1980, 2010 and 2015 (Fig. 1). Fertilizer N inputs showed dramstic increase from 0.1 Tg N (1950) and 9.4 Tg N (1980) to more than 22 Tg N in 2000 and 30 Tg N in 2015. Total N inputs were controlled mainly by fertilizer inputs. Annual N removal (4.3 to 21 Tg N) by harvested crops increased similarly but much lower than total N inputs during the same period. Therefore N surplus (sum of all kinds of N losses) showed huge increase especially after 1980, reflecting decreased N use efficiency (NUE).

2. Required and critical N inputs

We calculated the required N input (for food security) and the critical N input (for avoiding environmental harm) for China during 1950 and 2015 (Fig. 2), based on improved planetary boundaries (De Vries et al., 2013) and summarized literature data.

The required N input (including all sources such as N_{FER} , N_{OM} and N_{ENV}) to be 14, 22, 28, and 30 Tg N yr⁻¹ in 1950, 1980, 2000 and 2015, respectively. The critical N input was calculated to be 35 and 28 Tg N yr⁻¹ based on nitrate leaching and NH₃ emission thresholds, with average of 32 Tg N yr⁻¹. The actual N input was much lower than the required and critical N inputs in 1950 and close to those inputs in 1980 but substantially higher in 2000 and 2015 (Fig. 2).

3. Closing N gaps through integrated management

Using meta-analyses (Xia et al., 2017), we assessed a range of N saving potentials for crop production in China to close the N gaps between actual N input and critical N input.

We proposed a three-step strategy: (i) replacing fertilizer N by effectively recycled manure; (ii) reducing N fertilizer inputs based on the crop N demand, while accounting for all other non-fertilizer N sources; (iii) integrated soil-crop system management, including optimized N fertilization techniques (i.e. the '4R strategy') and optimized crop management (best cultivars; optimal rotations). We found that total N saving potentials combined by Steps 1 (4.8), 2 (9.3) and 3 (5.3) were approx. 20 Tg N yr⁻¹, together with substantially improved NUE in the food production system, suggesting the best managed N inputs (32.3 Tg N yr⁻¹) being within the abovementioned critical N inputs.

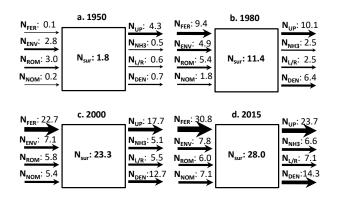


Fig. 1: Nitrogen budgets and N losses (Tg N yr⁻¹) to the environment in China's crop production systems.

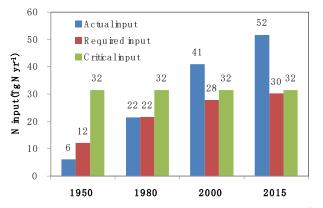


Fig. 2: Actual, required and critical N inputs (Tg N yr⁻¹) to China's food production in 1950, 1980, 2000 and 2015.

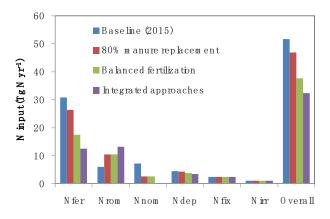


Fig. 3: Saving of N inputs by improved nutrient management practices (80% manure replacement, balanced fertilization, and integrated approaches) relative to baseline (2015).

To balance N inputs for green agricultural development, China requires a nationwide reform of its agricultural production systems via a substantial improvement in fertilizer products and management technology, nutrient policy and environmental regulations.

Acknowledgements

We thank the financial support from China National Funds for Distinguished Young Scientists (41425007) and the Sino-UK CINAg project on nitrogen (BB/N013468/1).

References

De Vries W, Kros J, Kroeze C, Seitzinger S P. 2013 Assessing planetary and regional nitrogen boudaries related to food security and adverse environmental impacts. *Curr. Opion. Environ. Sust.* **5** 392

Erisman J W, Sutton M A, Galloway J, Klimont Z and Winiwarter W 2008 How a century of ammonia synthesis changed the world. *Nat. Geosci.* **1** 636

Xia L, Lam S K, Wang J, Tang Q and Yang X 2017 Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis *Global Change Biol.* **23** 1917