Sources of nitrous oxide from intensively managed pasture soils

Johannes Friedl¹, Clemens Scheer², Daniele De Rosa¹, Christoph Müller^{3,4} Peter R. Grace¹, and David W. Rowlings¹

¹Institute of Future Environments, Queensland University of Technology, Brisbane, QLD 4000 Australia,

² Institute for Meteorology and Climate Research (IMK-IFU) Karlsruhe Institute of Technology (KIT) Garmisch-Partenkirchen, Germany.

³Institute of Plant Ecology (IFZ), Justus-Liebig University Giessen, Germany

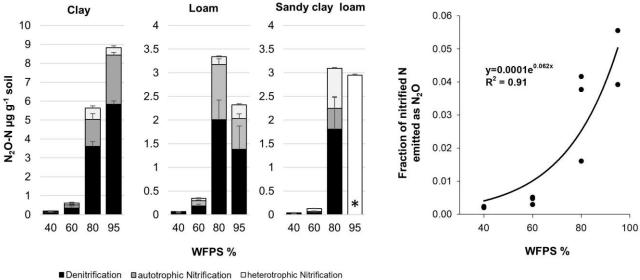
⁴ School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland

E-mail: johannes.friedl@qut.edu.au

Abstract

High N-inputs render pasture soils prone for N_2O emissions produced via multiple microbial pathways. Their contribution to N_2O production remains however unknown at various scales leading to uncertainty within models simulating the N-cycle. This soil microcosms study investigated sources of N_2O in response to wetting using ¹⁵N tracing and the ¹⁵N gas flux method. Emissions of N_2O via denitrification and nitrification mediated pathways showed an exponential response to soil water content across soils. Our results highlight the contribution of heterotrophic nitrification to N_2O production and demonstrate the proportion of nitrified N emitted as N_2O is an exponential function of soil water content.

Keywords: Nitrous oxide, nitrification, pasture soils, subtropical


1. Material and methods

Soil samples were collected from three dairy pastures in subtropical Australia, including a clay, a loam and a sandy clay loam. Soil microcosms were established with partially air dried soil and fertilised with NH₄NO₃ (35 μ g N g⁻¹ soil) either single (NH₄¹⁵NO₃) or double (¹⁵NH₄¹⁵NO₃) labelled. Soil microcosms were then wetted to four different waterfilled pore space (WFPS) levels and incubated over two days, with gas samples taken over the incubation period. The ¹⁵N analysis of N₂O and the soil mineral N pools enabled to split N₂O production into N₂O derived from denitrification, autotrophic nitrification and heterotrophic nitrification. Following the hole in the pipe model, N₂O emissions were expressed as a fraction of the respective N gross

transformation rate, obtained by a ${}^{15}N$ tracing model. For denitrification, the direct quantification of N₂ and N₂O via the ${}^{15}N$ gas flux method was used to quantify the fraction of denitrification emitted as N₂O.

2. Results and Discussion

The wetting induced emissions of N₂O across soils with peak losses > 8.5 μ g N₂O-N g⁻¹ soil from the clay. Denitrification was the main proces of N₂O production, accounting for 30-75% of overall N₂O emissions. The contribution of autotrophic nitrification and heterotrophic nitrification of organic N to N₂O emissions ranged from 20-30% and 5-50%, respectively. All N₂O production pathways increased exponentially with WFPS levels. The response of the fraction of denitrification emitted as N₂O differed between soils, reflecting the overlapping effects of N₂O

production and consumption. The fraction of nitrified N emitted as N_2O however showed an exponential increase with soil WFPS.

* $^{15}N_2O$ analysis failed

Fig. 1: Cumulative N_2O emissions derived from denitrification, autotrophic nitrification and heterotrophic nitrification from three pasture soils after wetting to four different water filled pore space levels and the fractions of nitrified N emitted as N_2O .

2. Conclusions

The exponential increase of N_2O emissions with soil WFPS demonstrates the rapid response of N turnover in C rich pasture soils, highlighting wetting events after dry conditions as critical for N_2O loss from these soils. Denitrification was the main process of N_2O production, but the significant contribution of heterotrophic nitrification shows organic N oxidation as an important source of N_2O . The exponential increase of nitrified N emitted as N_2O with WFPS provides experimental evidence to inform biogechemichal models simulating N_2O emissions and will help to constrain uncertainties when simulating N cycling from intensively managed pastures.

Acknowledgment: This is a sub-research project of the More Proft from Nitrogen Program supported by funding from the Australian Government Department of Agriculture as part of its Rural R&D for Profit program, Queensland University of Technology and Dairy Australia.

