

Impact of climate change on nitric oxide and nitrous oxide emission from typical landuses in Scotland^{*}

Sergiy Medinets^{1,2*}, Stella White³, Nicholas Cowan³, Julia Drewer³, Jan Dick³, Chris Andrews³, Matthew Jones³, Duncan Harvey³, Ute Skiba³

¹Regional Centre for Integrated Environmental Monitoring (RCIEM), Odesa National I. I. Mechnikov University (ONU), Odesa, Ukraine (*s.medinets@gmail.com) ²Department of Agroecology, Aarhus University, Tjele, Denmark ³UK Centre for Ecology and Hydrology (UK CEH), Edinburgh, UK *This research has recently been published in the SI of the ERL and is available at https://doi.org/10.1088/1748-9326/abf06e

INTRODUCTION

The impact of soil type, land use and climate on emission rates of nitric oxide (NO), a precursor of atmospheric ozone (O_3) , and N_2O , a powerful GHG, as well as ratios of N_2O :NO are still not well understood in both natural and managed ecosystems. The aim of this research was to identify soil NO and N₂O emission rates from typical land uses across Lowland and Highland regions of Scotland and estimate potential impacts of climate change, hypothesizing that warmer climate with irregular rain patterns (specifically longer drought periods followed by intensive rains) will entail larger NO and N₂O emissions.

METHODS

Soils were collected from the sites in the Highlands and Lowlands of Scotland (covering 9 typical land uses; 4 replicas each; Fig. 1), which are included in the <u>eLTER</u> network. A soil core air-flow-through incubation system coupled with a Teledyne NO_x analyser and Picarro G2508 instrument was used to measure NO and N₂O fluxes (Fig. 2). Soil samples were analysed for pH, soil moisture content (SMC), total C and N upon sampling (Table 1) and concentrations of NH_4^+ and NO_3^- (Fig. 3).

	pН	SMC (%)	TC (%)	C/N	N input*
	4.5	45.6	26.3	35.0	4.3 ^a
	3.4	64.0	42.9	31.0	4.3 ^a
	5.6	28.9	8.6	17.8	>155 ^{a+b}
	pН	SMC (%)	TC (%)	C/N	N input*
	3.6	84.1	42.7	23.1	16.8ª
	3.9	78.7	43.3	30.0	16.8 ^a
	4.1	33.0	19.4	19.6	16.8 ^a
	6.0	35.3	9.4	19.9	$>165^{a+b+c}$
	pH	SMC (%)	TC (%)	C/N	N input*
	3.6	87.3	42.3	29.5	8-11 ^a
ıl	3.6	85.6	43.4	26.4	50-70 ^{aa}

Mean NO emission, μg N m⁻² h⁻¹ Fig. 6. Correlation between soil NO₃⁻ & NH₄⁺ concentrations and NO emission

CONCLUSION

- emissions from both natural and managed ecosystems

RESULTS

Soil NH₄⁺ and NO₃⁻ concentrations (upon collection) (grey & blue bars)

- \Box NH₄⁺ content was significantly larger than NO₃⁻ in all soil samples at the beginning of experiment [Fig. 3]
- \Box High NH₄⁺ and NO₃⁻ were found nearby (A-MH) and within (C-GG for NH_4^+ and A-GG for NO_3^-) grazing lands and in the experimental peatland (W-MN) receiving large NH₃ deposition rates [Fig. 3]
- **Drought with temperature increase (DT)** (blue, red & green bars)
- **D DT** significantly increased NO and N₂**O** emission in the Lowland sites **receiving high N input** (A-GG, W-MN) compared the remaining sites [Fig. 4]
- \Box Smallest NO and N₂O emission were released from the natural Highlands (C-MH, C-FP) as well as the unmanaged A-SP (for N₂O only) **under DT** [Fig. 4]
- □ DT reduced NO emission (>2-fold) from the water-saturated natural Lowland moorlands (W-MB, A-MG), whereas N₂O emissions increased only by 1.3-1.6 times between 15°C and 25°C [Fig. 4, 5; see details in <u>Medinets et al., 2021</u>]
- \Box Release of N₂O was associated (p<0.01) with soil NO₃⁻ concentrations [Fig. 3, 5; see details in Medinets et al., 2021]

Rewetting after drought with elevated temperature (red & purple bars)

- \Box Rewetting increased soil NH₄⁺ and NO₃⁻ concentrations at most sites [Fig. 3; yellow & orange bars]. Notably NO₃⁻ increase was higher than that of NH_4^+ in all soils *except A-MG and W-MB* [see Medinets et al., 2021]
- \Box Rewetting significantly increased both NO and N₂O emissions in all sites except A-GG (for NO and N₂O) and W-MB (for N₂O only) [Fig. 4, 5]
- □ The largest NO response to rewetting was observed at all Highland sites, and the Lowland heather moorland (A-MH) [Fig. 4]
- \Box The largest N₂O response to rewetting was found in the natural moorland site (C-MH) and pine forest (C-FP) in the Highlands [Fig. 5]
- □ Mean ratio (rewetting/20°C) for NO emissions (2.9) was larger than that for N_2O (1.3) [see Fig. 4, 5]; increase in NO pulses was 31-fold higher compared to N₂O [see <u>Medinets et al., 2021</u>]

Relationships of fluxes with environmental drivers

- □ NO emissions/ pulses strongly depended on soil NO₃⁻ content [Fig. 6]
- \Box N₂O emissions were negatively correlated with the amount of water draining through the soil cores (r=-0.79, p<0.01; see <u>Medinets et al., 2021</u>)
- \Box Changes in NO and N₂O emission rates were always controlled (positively) by WFPS differences (see explanation in <u>Medinets et al., 2021</u>)

Typical land uses in Scotland are significant sources of N₂O and low-to-moderate sources of NO emissions to the atmosphere \Box Climate warming and extreme events, such as drought and intensive rain events, appear to increase soil NO pulses and N₂O

 \Box Soil NO emissions were much smaller (6-660 times) than N₂O, but their impact on air quality (esp. during dry-wet transitions) is likely to increase relative to combustion sources of NO_x, which are declining as a result of successful mitigation strategies